Real Estate Data Interchange Standard:
Real Estate Transaction Specification
(RETS)

Draft of May 11, 1999
Dan Musso

Copyright © 1999 Moore Data Management Services, GTE Enterprise Solutions, WyldFyre
Technologies,Inc., RealSelect, Inc., Interealty Corporation, and National Association of Realtors®.
All rights reserved. This document and translations of it may be copied and furnished to others,
and derivative works that comment on or otherwise explain it or assist in its implementation may
be prepared, published and distributed in whole or in any part without restriction, provided that
the above copyright notice and this paragraph are included on all such copies and derivative works.
However, this document itself may not be modified in any way, such as by removing the copyright
notice or reference to the copyright owners except as required to translate it into languages other
than English. The limited permissions granted are perpetual and will not be revoked by the
copyright owners or their successors or assignees.

This document and the information contained herein is provided on an as-is basis and Moore Data
Management Services, GTE Enterprise Solutions, WyldFyre Technologies,Inc., RealSelect, Inc.,
Interealty Corporation, and National Association of Realtors® hereby disclaim all warranties,
express or implied, including but not limited to any warranty that the use of the information
herein will not infringe any rights or any implied warranties for merchantability or fitness for a
particular purpose.

Table of Contents

1 INTRODUCTION ...ccuitiiiiiiiniiniieniitiitenittiittiiieietsiessttasiesssessesissssessssssssssesssssssssssssssssssssssssssasssssssssssnses 4
1.1 PURPOSE ... et ettt et e et ettt et et et e aae e 4
1.2 (0321 23 1 121 (07280 5 (0)1 4
1.3 (L08R 4
1.4 REQUIREMENTS ... ottt ettt e ettt ettt et et et et et et et et et e e et e e e aa e e enaeas 4
1.5 TERMINOLOGY ...uiiiniiinit ittt ettt ettt et ettt e e et et e e et e e et e e et e e e e e e enaeanenaeas 5

2 NOTATIONAL CONVENTIONS. c.tutttuiituiittiittiiuiittctaiitaittatiesitesieeseeasetsscssssssssssesssssssessssssssssesssssssssns 7
2.1 AUGMENTED BNF ... e 7
2.2 RIUL ES e e ettt et et ettt et et e 7

RN\ U DRNY: N3 D 0) 21 - N N 8
3.1 GENERAL MESSAGE FORMAT ...couiiniiiiiit ittt et et ettt et et ettt e e e e e e eeans 8
3.2 HEADER FIELD FORMAT oottt ettt ettt ettt e et et e e e e 8
33 REQUIRED SERVER RESPONSE HEADER FIELDS........tiuiiiiiiiiiiiiiiieiieiinei et eane 8
34 REQUIRED CLIENT REQUEST HEADER FIELDSuuuiuitiiiiiiti ettt 9
3.5 OPTIONAL SERVER RESPONSE HEADER FIELDSiuititiiiiiiiiei et ettt e e 10
3.6 OPTIONAL CLIENT REQUEST HEADER FIELDS.......iiuiiitiitiitit ettt ettt eane e 10
3.7 REQUEST FORMATeiiittiitit ittt e ettt et ettt et e et e e e e e e e e eaaeaneaas 10
3.8 RESPONSE FORMAT ..ottt et ettt et e e e e e e e e e e aas 10
3.9 GENERAL STATUS CODES.......iitiiiiit ittt ettt et et et e et et e e e e eaneens 12

4 LOGIN TRANSACTION ..cuiuiiuiiuiiuiiniiuiiuiietiuiieiieiietieiietiestestestsstastsstastsssastsssasssssssssssssssssasssssssssssassssse 14
4.1 N 208 2 1 PPN 14
4.2 DIGEST ALGORITHM. ...ttt ittt ettt et et ettt et et et e et e e et et et e et e e e e e e eaneees 14
43 WWW-AUTHENTICATION RESPONSE HEADER......c.uttiiiiitiiiiiiitii ettt 14
4.4 THE AUTHORIZATION REQUEST HEADERc.ouiiiiiiitiiiiiiii ettt ettt e eane e 15
4.5 AUTHORIZATION EXAMPLEoiuiiiiiiiiiii ettt et et ettt et e e e e e e eaneens 16
4.6 OPTIONAL RESPONSE HEADER FIELDS.....cuuiiititinitiei e ettt e e e e e e e aas 16
4.7 REQUIRED REQUEST ARGUMENTS ...ttt et ettt et et e et et e et e e e e e aae 17
4.8 OPTIONAL REQUEST ARGUMENTS. ... ettt ittt e e et et e et e e e e eaneees 17
4.9 LOGIN RESPONSE BODY FORMAT ...ttt et ettt et et et et e e et e e e e e aas 17
4.10 REQUIRED RESPONSE ARGUMENTStuutitniitiittiit ettt ettt et et eae et e et et e et e et eaiaenanes 18
4.11 OPTIONAL RESPONSE ARGUMENTSuiuuiitniiiiitiit ettt et et e et et et et e et e e e et e e e et eaiaenanes 18
4.12 CLIENT SOFTWARE REQUIREMENTS......c.ituiiiiiiiiiiiiiiiiiiieieenennen ERROR! BOOKMARK NOT DEFINED.
413 RESOURCES. ... ettt ettt ettt ettt et et e ettt et et e ea et et e e e e e e e 19
414 REPLY CODES ... ittt et ettt et ettt e et et e e e e e eaaas 20
4.15 MODULE RESULT CODES.......ccuttiuitiniiiiiiiiieiieiieiineeieeieeieeanes ERROR! BOOKMARK NOT DEFINED.

5 LOGINCOMPLETE TRANSACTION ...cccitutituiieuiieniieniieiinciniiemicesiiesteesseessessrsssssscsssesssssssrssssssssssssss 22
5.1 REQUIRED REQUEST ARGUMENTSocouiiiniiiniiieiieiieeiieeineennes ERROR! BOOKMARK NOT DEFINED.
5.2 OPTIONAL REQUEST ARGUMENTS.....c.utviiiiiiiiiiniiiiineieieieaean, ERROR! BOOKMARK NOT DEFINED.
53 REQUIRED RESPONSE ARGUMENTSccuiiiiiiiiaiiieiiieiieeieeineeanes ERROR! BOOKMARK NOT DEFINED.
54 OPTIONAL RESPONSE ARGUMENTScuuiiiniiineiieiieiiaeiieeineeanes ERROR! BOOKMARK NOT DEFINED.
5.5 REPLY CODES ..ottt ERROR! BOOKMARK NOT DEFINED.

6 GETOBJECT TRANSACTION ...ccituiituiiuiinieniieniieniieniteitectsicesiersieessesssesssesssrsssssscssssssssssssssssssssssssse 23
6.1 REQUIRED CLIENT REQUEST HEADER FIELDScouiiitiiiiiiiiiiiiieii ettt eane e 23
6.2 REQUIRED SERVER RESPONSE HEADER FIELDS......cuiiuiitiiiiiiieiei e 24
6.3 OPTIONAL SERVER RESPONSE HEADER FIELDSuiiitiiiiiiiiiieie ettt eane e 24
6.4 REQUIRED REQUEST ARGUMENTS ...ttt ettt ettt et et et et et e et et e e e e e e eaneees 25
6.5 OPTIONAL REQUEST AGRUMENTS. ... ottt ettt et ettt et et e e e e eaneens 25
6.6 REQUIRED RESPONSE ARGUMENTSuituiiiiiitiieit ittt ettt et et ettt et e et e e eaneeaneens 25
6.7 OPTIONAL RESPONSE ARGUMENTSiiuiiiitiiiiitiii ittt ettt ettt e ea e e e eaneens 25
6.8 IMETADATA .ottt e e e et e et et et et et e e et et et et aaeaas 25
6.9 RESOURCES. ... ettt ettt ettt et et et et et et et et et et et et e e et et et e e eaneane 26

April 14, 1999

6.10 MULTIPART RESPONSESottt ettt ettt ettt et et et et et e e e et et e eaeenns 26

7 LOGOUT TRANSACGTION...ccuttteteieeereecereeceerecasescscsscscsscscsssscsssscssssssssssssssssssssssssssssssssscsssssasssssssssnns 28
7.1 REQUIRED REQUEST ARGUMENTS ...\ttt et e ettt e e renaaas 28
7.2 OPTIONAL REQUEST ARGUMENT S, ... tititititititit ettt et e ettt ettt e e e ereranans 28
7.3 REQUIRED RESPONSE ARGUMENTSouiuititiiiii ittt e et ettt et et e e e eraaans 28
7.4 OPTIONAL RESPONSE ARGUMENTS ...ttt ittt e e e e e el 28

8 SEARCH TRANSACTION...cutttttteetteeererceerecessscscsssesssscsssscssssesssssssssssesssscsssscsssssssssssesssscsssscasssssssssnns 29
8.1 N 27N A0 & B 14 33 SN TR 29
8.2 SEARCH TERMINOLOGY .. unititiniitiiet ettt et e et e et e et e et e ettt e et ettt e e eaanens 29
8.3 SEARCH RESPONSE BODY FORM AT ...ttt ettt e e aaaaas 30
8.4 REQUIRED REQUEST ARGUMENTSttt e e e ettt ettt e e e aeaans 30
8.5 OPTIONAL REQUEST ARGUMENTS. ... ottt et 31
8.6 REQUIRED RESPONSE ARGUMENTS ...ttt e et 32
8.7 OPTIONAL RESPONSE ARGUMENTS ...ttt ettt et e et e et et ettt et et aaaans 32
8.8 QUERY LANGUAGE ...ttt et e et et e et e e e et e et et e e et et et et et e et e e e te e eaaanaes 33
8.9 | 213 P A 00 5) 2 SRR 34

9 GET TRANSACGTION ..cuiuiuitiiuiereereeereeeeseseresssseesssesssssssssssssssssessnns 36
9.1 REQUIRED REQUEST ARGUMENTS ...ttt e e e e ettt e e e e et e e e reraraaens 36
9.2 OPTIONAL REQUEST ARGUMENTS.ottt ettt e e e e e 36
9.3 REQUIRED RESPONSE ARGUMENTS ...\ttt e ettt e e e rananas 36
94 OPTIONAL RESPONSE ARGUMENTS ...ttt ettt et e et e et et e ettt et et et et e et e eaaanens 36
9.5 STATUS CONDITIONS ..ttt ittt et e ettt et e ettt et et et ettt e et ettt et e e e aaanens 36

10 UPDATE TRANSACGTION...cuctuetituteieiererereeesesesseessssessssessesssscssnns 37

11 METADATA FORMATcetititittieteeeieteeeeseeessessesesssscssssssssssssssssesssssssssesssssssssssssssssssssessssessssssssnes 38
11.1 ORGANIZATION AND RETRIEVAL ...ttt e e e e e 38
11.2 METADATA DICTIONARY FOR RESOURGCES ...ttt e et 38

11.2.1 Well-Known ReSOUICE NAIMESivninieii ittt e 38
| N VA 3 o s PN 39
11.2.3 RS OUT CES ..ttt e e s 40
11.2.4 Searchable RESOUICE ClasSSES. . .uuuiiiiii ettt aaeaas 41
| T O o 1T A 4 1< PP 42
11.3 METADATA FORMAT FOR SEARCHABLE RESOURCES.ttt ittt 43
| T T V4 3 o s PPN 43
| T I 1 o) 1< PN 43
T 0 T 190701 1§ 1 46

12 COMPACT DATA FORMATccttititittieirtererereeecsesessessssesesscssssssssssssssssesssssssssssssssssssssesssssssssensses 48
12.1 OVERALL FORMAT ...ttt e e e e e e e e e e e, 48
12.2 TRANSMISSION STANDARDS ..ottt e e et et e et et e et e eaes 48

13 SESSTION PROTOCOL.....c.cuiuieiiuieieneeeececeereceerscecescecsscscsssscsssscssssssssscassssscssssssssssassssassssasssssssssssansns 49
13.1 CONNECTION EST ABLISHMEN Tttt e et ettt et e et et et ettt 49
13.2 AUTHORIZATION. ...t e e e e e e 49
13,3 SESSION ...ttt ettt e 49
134 TERMINATION L.ttt e e e e e e e e e e e, 50

14 SAMPLE SESSIONS ..ctituttitetteceerreecrscecessscsssscsssscsssscscsssscsssscssssssssscsssssssssssssssssssssssssssscsssnsassssassns 51

15 ACKNOWLEDGMENTS....cuctittetitecereeceeracecrscecsscacsscacsssscsssscssssssssscsssssssssssssssssasssssssssassssssasssssssnns 52

16 AUTHORS ... e ieiitieieiteeeeteceeencactscacensacassocassssacsssassssscsssssassssassssssssssssssssassssassssnssssncnssnsassnsassnsnses 52

17 REFERENCES ...t tuittiittterteteteeteesessessssessessnssssnns 53

April 14, 1999

1 Introduction

1.1 Purpose

This specification is the first part of a two part series defining the interchange of real estate
information. The purpose of this document is to define a specification for the exchange of real estate
property information, with the intent of eventually describing all interchangeable aspects of a real
estate transaction. It defines a standard interface by which a client program may communicate with
an property data server. The specification defines a protocol for implementing transactions, and
incorporates an Extensible Markup Language (XML) specification for general purpose interchange.
The specification also provides for a compressed data interchange format and specification to allow
interchange of machine-interpretable property information. This second document, the Real Estate
Transaction DTD defines the general structure of the XML DTD that can be used in transferring
information from the server.

1.2 Certification

The National Association of REALTORS® (NAR) intends to implement a certification program under
which a third-party product may be declared RETS Compliant, and include an NAR-designated logo
on the client or server based product and any associated promotional materials.

1.3 Scope

This specification is intended to define only the minimum a product or service must do in order to
earn a “Compliant” certification. This specification is extensible and nothing in the specification
precludes a vendor from adding data or functionality over and above that detailed here. However,
when a function is provided or a data element is stored by a compliant system, it must offer access to
the function or mechanism in a way that complies with the specification in order to earn
certification.

1.4 Requirements

This specification uses the same words as RFC 1123 [1] for defining the significance of each
particular requirement. These words are:

MUST This word or the adjective "required" means that the item is an absolute
requirement of the specification. A feature that the specification states MUST
be implemented is required in an implementation in order to receive
certification.

SHOULD This word or the adjective "recommended" means that there may exist valid
reasons in particular circumstances to ignore this item, but the full
implications should be understood and the case carefully weighed before
choosing a different course. A feature that the specification states SHOULD
be implemented is treated for certification purposes as a feature that may be
implemented.

MAY This word or the adjective "optional" means that this item is truly optional. A
feature that the specification states MAY be implemented need not be
implemented in order to receive certification. However, if it is implemented,
the feature MUST be implemented in accordance with the specification.

April 14, 1999

An implementation is not compliant if it fails to satisfy one or more of the MUST requirements for
the protocols it implements. An implementation that satisfies all the MUST and all the SHOULD
requirements for its protocols is said to be "unconditionally compliant"; one that satisfies all the
MUST requirements but not all the SHOULD requirements for its protocols is said to be
"conditionally compliant."

1.5 Terminology

Arguments

Argument-List

Client

Endpoint

Metadata

Tag/value pairs passed to a transaction as part of the Argument-List. The tag
and the value are separated by an equal sign ("=").

All the tag/value pairs for a request are Transfer-Encoded (see RFC 2068 [2])
and turned into a stream with each pair being separated by an ampersand
(&) character. The tag/value stream is appended to the URI after a delimiting
question mark (?) for the GET method. The tag/value stream is sent as the
first entity body for the POST method.

Transfer-Encoding MUST be used to indicate any transfer codings applied by
an application to ensure safe and proper transfer of the Argument-List.

The data and Arguments for a response are turned into a stream with each
data record and Argument being separated by a carriage return/line feed.

The system requesting data. This may well be another server seeking to
update itself from the a server with a cross-presentation agreement. The
specification does not assume any particular kind of client.

Either a server or client.

The set of data that describes real estate data fields in detail.

Metadata Dictionary The set of data that describes the available Metadata. This is basically the

Optional

Required

Server

Session ID

Request ID

Meta-Metadata. It is used to determine the different classes of property. Not
the fields within the property classes, but what property classes there are. It
also defines what different types of searches are available (tax, open house,
ete.).

A compliant server or client is not required to include any field designated as
optional. The specification states the action to be taken by a compliant
system in the absence of an optional field. The fact that the specification
designate a field as optional does not mean that the recipient of a transaction
that is missing optional fields is required to provide all services that could be
required if the field were present.

A compliant server or client MUST include any field designated as required.
A transaction that does not include every required field MUST be rejected by
the recipient.

The system providing data (also, referred to as the "host").

A character string of up to 64 printable characters that uniquely identifies a
session to a server. The contents are implementation-defined.

A character string of up to 64 printable characters which uniquely identifies a
request to a client. The contents are implementation-defined.

April 14, 1999

Standard-Name The name of a real estate data field as it is known in the Real Estate
Transaction XML DTD.

System-Name The name of a real estate data field as it is known in the metadata.

April 14, 1999

2 Notational Conventions

2.1 Augmented BNF

This document expresses message layouts and character sequences in an augmented Backus-Naur

Form (BNF) similar to that used by RFC 822 [4].

2.2 Rules

The following rules are used throughout this specification to describe basic parsing constructs. The

US-ASCII coded character set is defined by ANSI X3.4-1986 [5].

OCTET
CHAR
UPALPHA
LOALPHA
ALPHA
DIGIT
ALPHANUM
SQLFIELDNAME
CTL

CR

LF

SP

HT

<">

NULL

CRLF

LWS

HEX

LHEX
TEXT

tspecials

token
quoted-string
qdtext

= <any 8-bit sequence of data>

= <any US-ASCII character (octets 0 - 127)>

ALPHA | DIGIT

= ALPHA *31ALPHANUM

<any US-ASCII uppercase letter "A".."Z">
<any US-ASCII lowercase letter "a".."z">
UPALPHA | LOALPHA

<any US-ASCII digit "0".."9">

= <any US-ASCII control character (octets 0 - 31) and DEL (127)>
= <US-ASCII CR, carriage return (13)>

= <US-ASCII LF, linefeed (10)>

= <US-ASCII SP, space (32)>
= <US-ASCII HT, horizontal-tab (9)>
= <US-ASCII double-quote mark (34)>

= <no character>

=CRLF

= [CRLF] 1*(SP | HT)

= "AII | IIBII | IICI! | IIDII | "EII | IIFII | llall | llbll | llcll | lldll | llell | Ilf“ |

DIGIT

= llall | llbll | llcll | Ildll | Ilell | llfl | DIGIT

nn
b

non
b

<any OCTET except CTLs, but including LWS>

= ll(ll | ll)ll | Il<ll | ll>ll | ll@ll |
ll=ll | ll{ll | II}II | SP | HT

| ll:ll | Il\ll | <|I> | ll/ll | ll[ll | ll]ll | Il?ll |

= 1*<any CHAR except CTLs or tspecials>

= (<"> *(qdtext) <">)
= <any TEXT except <">>

April 14, 1999

3 Message Format

The Real Estate Transaction Specification is modeled on, and is compliant with HTTP/1.1. This
specification does not require the implementation of persistent connections as defined in RFC 2068,
however, it also does not preclude the use of them.

3.1 General Message Format

RETS messages consist of requests from a client to a server, answered by responses from the server
and returned to the client. Both request and response use the generic message format of RFC 822,
consisting of a start line, one or more header lines, an empty line, and zero or more body lines. The
body may be null, depending on the message.

3.2 Header Field Format

A header field consists of three elements: a field name, a colon (":"), and a field value followed by a
CRLF. The field value may be preceded or followed by any amount of LWS, though a single SP is
preferred between the colon and the field value and no LWS is preferred after the field value; the
LWS is not interpreted as part of the field value. The value itself may consist of any sequence of
characters except CR or LF.

3.3 Required Server Response Header Fields

The header of any messages sent from the server MUST contain the following header fields:

Date

Cache-Control

Content-Type

RETS-Version

The server MUST send the date using the format defined in RFC 1123. This
is a standard HTTP header field as defined in RFC 2068.

Example: Date: Sat, 20 Mar 1999 12:03:38 GMT

The date/time stamp MUST be represented in Greenwich Mean Time (GMT),
without exception.

The RFC 2068 standard general-header field is used to specify directives that
MUST be obeyed by all caching mechanisms along the request/response
chain. The directives specify behavior intended to prevent caches from
adversely interfering with the request or response. This field SHOULD be set
to "private" for all transaction in this specification.

Example: Cache-Control: private

This is a standard HTTP header field as defined in RFC 2068. It specifies the
media type of the underlying data. The server MUST return this field in all
replies. For most replies this will be set to "text/plain". There are only two
exceptions to this: (1) When the Search Transaction returns XML data the
Content-Type should be set to "text/xml". (2) See Section 5.2 in the GetObject
Transaction for the other exception and more information on this field.

Example: "Content-Type: text/plain”

The server MUST send the RETS-Version. The convention used is a
"<major>.<minor>" numbering scheme similar to the HTTP Version in
Section 3.1 of RFC 2068. The version of a RETS message is indicated by a
RETS-Version field in header of the message.

April 14, 1999

RETS-Version ="RETS-Version" ":" version-info
version-info ="RETS""/" 1*DIGIT "." 1*DIGIT

Example: RETS-Version: RETS/1.0

Applications sending request or response messages, as defined by this
specification, MUST include a RETS-Version of "RETS/1.0". Use of this
version number indicates that the sending application is at least
conditionally compliant with this specification.

3.4 Required Client Request Header Fields

The header of any messages sent from the client MUST contain the following header fields:

Accept

User-Agent

Content-Length

RETS-Version

Cookie

This is a standard HTTP header field as defined in RFC 2068. Except for the
GetObject Transaction, this value should be set to "*/*".

Example: "Accept: */*"
See Section 5.1 for more information on this field.

This header field contains information about the user agent originating the
request. This is for statistical purposes, the tracing of protocol violations, and
automated recognition of user agents for the sake of tailoring responses to
avoid particular user agent limitations, as well as providing enhanced
capabilities to some user-agents. All client requests MUST include this field.
This is a standard HTTP header field as defined in RFC 2068.

User-Agent = "User-Agent" ":" SP product
product = token ["/" product-version]
product-version = token

Example: User-Agent: MLSWindows/4.00

Product tokens should be short and to the point -- use of them for advertising
or other non-essential information is explicitly forbidden. Although any token
character may appear in a product-version, this token SHOULD only be used
for a version identifier (i.e., successive versions of the same product SHOULD
only differ in the product-version portion of the product value). For more
information about User-Agent see RFC 2068.

A server MAY advertise additional capabilities based on the User-Agent, and
MAY refuse to proceed with the authorization if valid User-Agent has not
been supplied.

The Content-Length entity-header field indicates the size of the message-
body, in decimal number of octets. This is a standard header field defined in
RFC 2068 and is required for all requests containing a message-body.

The RETS-Version as defined in Section 3.3.

The implementation of this specification is intended to create a stateless
system however, because the user is required to login there are at least two
states. The use of the Cookie is required to provide a mechanism that can
ensure that there are not multiple simultaneous sessions with a single

April 14, 1999

username/password, if required by the server, and also to provide an added
level of security. A new RETS-Session-ID Cookie is issued by the server at
Login (see Section 4.6). This MUST be saved by the client application and
sent in the HTTP header as "Cookie: RETS-Session-ID=" to all subsequent
requests. The RETS-Session-ID SHOULD be set to '0' for the initial Login.

Cookie ="RETS-Session-ID=" session-id
session-id = 1*64ALPHANUM

Example: Cookie: RETS-Session-ID=AE872BC1DDFE7880DAD31233

3.5 Optional Server Response Header Fields

RETS-Request-ID A character string of printable characters which uniquely identifies a request
to a client. The contents are implementation-defined. If this field is included
in a request from the client then the server MUST return it in the response.

RETS-Request-ID = 1*64ALPHNUM

Server The server standard response-header field contains information about the
software used to handle the request. The format of this field is the same as
the User-Agent field in Section 3.4.

Example: Server: Microsoft-11S/4.0

3.6 Optional Client Request Header Fields

RETS-Request-ID RETS-Request-ID as defined in Section 3.5

3.7 Request Format

The request takes two forms. The form used is dependent on the Method. For the POST Method the
post-request form is used. For the GET Method the get-request form is used. The major difference
between the two forms is the location of the Argument-List. In the case of the get-request the
Argument-List is appended to the Request-URI after a delimiting question mark ("?"). For the post-
request the Argument-List is sent as the first entity body for the POST method.

post-request ="POST" SP Request-URI SP HTTP-Version CRLF
*message-header
CRLF
[Argument-List]

get-request ="GET" SP Request-URI ["?" Argument-List] SP HTTP-Version CRLF
*message-header

CRLF

The Request-URI, HTTP-Version and message-header are defined in RFC 2068.

3.8 Response Format

The server response to a request includes a Status-Line, zero or more header-lines, a CRLF and a
reply body. The Status-Line of a response consists of a status code and a (possibly empty) reason
phrase.

April 14, 1999

10

server-reply = Status-Line
*(header-line)
CRLF

[body-start-line *(response-arguments) body-end-line]
Status-Line = HTTP-Version SP Status-Code SP Reason-Phrase CRLF
Status-Code = 1*4DIGIT

The list of allowable Status-Codes can be found in RFC 2068. The
more useful Status-Codes are provided in Section 3.9. Servers MUST
use an appropriate predefined status codes when communicating with
the client. When an error is encountered a client MAY display both the
status code and the associated Reason-Phrase in its communication
with the user.

The Status-Code is intended to provide HTTP level errors to the client
(Authorization, URI, etc.). Software level errors (search queries,
invalid argument values, etc.) should be returned in the reply-code.
Reason-Phrase = *<TEXT, excluding CR/LF>
body-start-line ="<RETS" 1*SP reply-code 1*SP quoted-string *SP ">" CRLF

If a body is returned in the response then the body-start-line MUST be
returned.

response-arguments = ((tag "=" value) | data) CRLF

body-end-line ="</RETS" [1*SP end-reply-code 1*SP quoted-string *SP] ">" CRLF
If a body-start-line is returned in the response then the body-end-line
MUST also be returned.

reply-code = 1*5DIGITS

The reply-code is included to provide a mechanism to pass additional
information to the client in the event that the request is processed OK
(Status-Code = 200) but some condition still exist that may require an
action by the client. A value of '0' indicates success. Applicable reply-
codes can be found under specific transactions.

end-reply-code = 1*5DIGITS

The end-reply-code is included to provide a mechanism to pass
additional information to the client in the event that the request being
processed by the server errors before the request has been completed.
This allows the server to start streaming out data before it has
completed processing the request. A value of '0' indicates success,
however the server SHOULD only send an end-reply-code if there is
an error.

The valid <tag>, <value> and <data> elements are defined in the Response Arguments section for
each transaction.

An example server-reply:

April 14, 1999 11

HTTP/1.1 200 OK

Server: Microsoft-115/4.0

Date: Sat, 20 Mar 1999 12:03:38 GMT
Content-Type: text/plain
Cache-Control: private

<RETS 0 "SUCCESS">
Tagl=Valuel
Tag2=Value2

</RETS>

3.9 General Status Codes

Any of the following status codes (in addition to the others provided in RFC 2068) may be returned

by a server in response to any request:

Status Meaning

200 Operation successful.

400 Bad Request
The request could not be understood by the server due to malformed syntax.

401 Not Authorized
Either the header did not contain an acceptable Authorization or the
username/password was invalid. The server response MUST include a
WWW-Authenticate header field.

402 Payment Required
The requested transaction requires a payment which could not be
authorized.

403 Forbidden.
The server understood the request, but is refusing to fulfill it.

404 Not Found
The server has not found anything matching the Request-URI.

405 Method Not Allowed
The method specified in the Request-Line is not allowed for the resource
identified by the Request-URI.

406 Not Acceptable
The resource identified by the request is only capable of generating response
entities which have content characteristics not acceptable according to the
accept headers sent in the request.

408 Request Timeout
The client did not produce a request within the time that the server was
prepared to wait.

411 Length Required
The server refuses to accept the request without a defined Content-Length.

412 Precondition Failed
Transaction not permitted at this point in the session.

413 Request Entity Too Large
The server is refusing to process a request because the request entity is
larger than the server is willing or able to process.

April 14, 1999

12

414

Request-URI Too Long

The server is refusing to service the request because the Request-URI is
longer than the server is willing to interpret. This error usually only occurs
for a GET method.

500

Internal server error.
The server encountered an unexpected condition which prevented it from
fulfilling the request.

501

Not Implemented

The server does not support the functionality required to fulfill the request.

503

Service Unavailable
The server is currently unable to handle the request due to a temporary
overloading or maintenance of the server.

505

HTTP Version Not Supported
The server does not support, or refuses to support, the HTTP protocol
version that was used in the request message.

April 14, 1999

13

4 Login Transaction

A client MUST issue a login request prior to proceeding with any other request. The Login
Transaction verifies all login information provided by the user. If there are no problems with the
information a RETS-Session-ID cookie MAY be issued. If issued, the Session ID MUST be passed
from the client application to the server in all subsequent transactions in the request header and is
validated by the server before the user is allowed to access the service.

The login transaction also provides for a mechanism that servers MUST implement to handle the

support of client software copy protection. The server itself is not required to implement the client
software copy protection but it must provide a means for it to be implemented.

4.1 Security
The Login transaction uses a simple challenge-response method called Digest Authentication. Digest
Authentication suffers from many known limitations. It does not provide a secure authentication
mechanism and provides no encryption of object content. That is not the intent. It is intended solely
to replace a much weaker and even more dangerous authentication mechanism: Basic
Authentication. Unlike Basic Authentication, Digest Authentication can ensure that the password is
never sent in the clear.

Needs for secure HTTP transactions cannot be met by Digest Authentication. For those needs SSL or
SHTTP are more appropriate protocols.

For security reasons all servers SHOULD, at a minimum, implement the modified version of Digest
Authentication in this specification. For more information on the Digest Authentication Scheme
refer to RFC 2069 [6].

Refer to Section 12.2 for a simplified explanation of the authentication scheme.

4.2 Digest Algorithm
The algorithm used to generate the digest and checksum is MD5 [3]. In this specification the string
obtained by applying the digest algorithm to the data "data" with secret "secret" will be denoted by
KD(secret, data), and the string obtained by applying the checksum algorithm to the data "data" will
be denoted H(data).
For the "MD5" algorithm

H(data) = MD5(data)

and

KD(secret, data) = H(concat(secret, ":", data))

i.e., the digest is the MD5 of the secret concatenated with a colon concatenated with the data.

4.3 WWW-Authentication Response Header
If the server receives a Login request and an acceptable Authorization header (as defined in Section
4.4) is not sent, the server MUST respond with a "401 Unauthorized" status code, and a WWW-
Authenticate header.

WWW-Authenticate ="WWW-Authenticate"":" "Digest" digest-challenge

April 14, 1999 14

digest-challenge = 1#(realm | nonce | opaque)

realm ="realm" "=" realm-value

realm-value = quoted-string
A string to be displayed to users so that they know which username
and password to use. An example might be Users@TheSite.com.

nonce = "nonce" "=" nonce-value

nonce-value = quoted-string
A server-specified data string which MAY be uniquely generated each
time a "401 Unauthorized" response is made and MUST be returned
by the client unchanged. This string SHOULD be base64 or
hexadecimal data. The nonce SHOULD have the following format:

H(client-IP ":" time-stamp ":" private-key)

Where client-IP is the dotted quad IP address of the client making the
request, time-stamp is a server-generated time value, private-key is
data known only to the server.

With a nonce of this form a server would normally recalculate the
nonce after receiving the client authentication header and reject the
request if it did not match the nonce from that header. In this way the
server can limit the reuse of a nonce to the IP address to which it was
issued and limit the time of the nonce's validity.

opaque = "opaque" "=" opaque-value

opaque-value = quoted-string
A server-specified data string which MUST be returned by the client
unchanged. This string SHOULD be base64 or hexadecimal data. The
opaque-value is useful for transporting state information around.

4.4 The Authorization Request Header

When the client receives a "401 Unauthorized" status code it is expected to retry the request, passing
an Authorization header, which is defined as follows.

Authorization = "Authorization" ":" "Digest" digest-response

digest-response = 1#(username | realm | nonce | digest-uri | response | opaque)
username = "username" "=" username-value

username-value = quoted-string

digest-uri ="uri" "=" digest-uri-value

digest-uri-value = request-uri ; As specified by HTTP/1.1

response = "response" "=" response-digest

response-digest =<"> *LHEX <">

The definitions of response-digest above indicate the encoding for their values. The following
definitions show how the value is computed:

response-digest =<"> < KD (H(A1), unquoted nonce-value ":" H(A2) > <">
Al = unquoted username-value ":" unquoted realm-value ":" password
password = < user's password >

April 14, 1999

A2 = Method ":" digest-uri-value

unquoted username-value = "quoted-string" as specified in Section 2.2 of RFC 2068. However,
the surrounding quotation marks are removed in forming the string
Al. Thus if the Authorization header includes the fields
username="joesmith", realm=Users@TheSite.com and the user
joesmith has password "SuperAgent" then H(A1) would be:
H(oesmith:Users@TheSite.com:SuperAgent)
with no quotation marks in the digested string.

Method = The HTTP request method as specified in Section 5.1 of RFC 2068.

request-uri = The Request-URI from the request line as specified in Section 5.1 of
RFC 2068. This may be "*", an "absoluteURL" or an "abs-path" as
specified in Section 5.1.2 of, but it MUST agree with the Request-URI.
In particular, it MUST be an "absoluteURL" if the Request-URI is an
"absoluteURL".

4.5 Authorization Example

The following example assumes that a client application is trying to access the Login URI on the
server. The URI is "http://www.TheSite.com/login". Both client and server know that the username is
"joesmith", and the password is "SuperAgent".

The first time the client requests the document, no Authorization header is sent, so the server
responds with:

HTTP/1.1 401 Unauthorized

WWW-Authenticate: Digest realm="Users@TheSite.com",
nonce="dcd98b7102dd2f0e8b11d0f600bfb0c0"
opaque="5ccdef346870ab04ddfe0412367fccba"

The client may prompt the user for the username and password, after which it will respond with a
new request, including the following Authorization header:

Authorization: Digest username="joesmith",
realm="Users@TheSite.com",
nonce="decd98b7102dd2f0e8b11d0f600bfb0c0",
opaque="5ccdef346870ab04ddfe0412367fccba",
uri="/login",
response="e966c932a9242554e42c8ee200cec7"

4.6 Optional Response Header Fields

In addition to the other Optional Server Response Header Fields specified in Section 3.5 the
following response header field MAY be sent.

Set-Cookie The use of the Set-Cookie is required to provide a mechanism that, if required
by the server, can guarantee that there are not multiple simultaneous
sessions with a single username/password and also to provide an added level
of security. A new RETS-Session-ID cookie is issued by the server at Login.
This MUST be saved by the client application and sent in the HTTP header of
any subsequent client requests during the session as "Cookie: RETS-Session-
ID=".

April 14, 1999

16

Set-Cookie = "RETS-Session-ID=" session-id ";"

SP "path=/"
session-id = 1*64ALPHANUM
Example: Set-Cookie: RETS-Session-ID=AY872YOPOIPPOIP7880;
path=/

Any server implementations that do not require the use of Session IDs should
set the session-id in the response to '0'.

4.7 Required Request Arguments

There are no required request arguments.

4.8 Optional Request Arguments
BrokerCode = broker-code "," [broker-branch]

Some servers may support the scenario where a user belongs to multiple
brokerages. If this is the case then the broker information (broker-code and
broker-branch) must be input during login. If they are not included then the
list of broker codes/branches is passed back to the client application through
the response along with a "20012 Broker Code Required" reply-code.

broker-code = 1*24ALPHANUM
broker-branch = 1*4ALPHANUM

4.9 Login Response Body Format

The body of the login response has three basic formats when replying to a request. The simplest form
is when there is an error:

"<RETS" 1*SP reply-code 1*SP quoted-string *SP ">" CRLF
"</RETS [1*SP end-reply-code 1*SP quoted-string *SP] >" CRLF

The second case is where the user belongs to more than one broker and they have not provided
broker information as part of the login. The reply contains a list of all brokerages the user belongs to.

"<RETS" "20012" 1*SP quoted-string *SP ">" CRLF
2%("Broker" "=" broker-code ["," broker-branch] CRLF)
"</RETS [1*SP end-reply-code 1*SP quoted-string *SP] >" CRLF

The third case is the normal "OK" response. In this case several arguments are passed back to the
client in the response.

"<RETS" 1*SP reply-code 1*SP quoted-string *SP ">" CRLF
member-name-tag
user-info-tag
broker-tag
[office-list-tag]
[metadata-ver-tag |
[balance-tag]
[timeout-tag]
[pwd-expire-tag]
capability-url-list

April 14, 1999

"</RETS [1*SP end-reply-code 1*SP quoted-string *SP] >" CRLF

4.10Required Response Arguments
broker-tag = "Broker" "=" broker-code ["," broker-branch] CRLF
Broker information for the logged in user is returned to the client.

broker-code = 1*24ALPHANUM
broker-branch = 1*4ALPHANUM

member-name-tag = "MemberName member-name CRLF
The member's full name (display name) as it is to appear on any
printed output.

member-name = 1*48TEXT
user-info-tag ="User" "=" user-id "," user-level "," user-class "," agent-code CRLF

This tag contains basic information about the user that is stored on
the server. If a server does not support one of these fields then it
MUST be set the return value to NULL

user-id = 1*30ALPHANUM
user-class = 1*3ALPHANUM
user-level = 1*2DIGIT
agent-code = 1 *14ALPHANUM

The agent-code is the code that is stored in the property records for the
listing agent, selling agent, etc. In some implementations this may be
the same as the user-id. The fields user-class and user-level are
implementation dependent and may not exist on some systems, in
which case, a value of NULL should be returned.

capability-url-list = see Section 4.12 for format information

The server MUST return a capability list that includes at least a
Search URL. The server MAY in addition return any of the other types
in Section 4.12. If the server supports any of the additional functions
(and the client is entitled to access the function by virtue of the
supplied login information), it MUST provide URLs for those
functions. The server MAY supply URLs in addition to those in Section
4.12 based on the user-agent. If it does, it MUST follow the format
specified in Section 4.12.

4.110ptional Response Arguments
metadata-ver-tag = "MetadataVersion" "=" new-metadata-version CRLF
This is the new version of the metadata that is available on the server.
This value is different than the metadata-version that was passed in

the Arguments if there is a newer version available on the server

metadata-version = 1*2DIGITS "." 1*2DIGITS ["."

April 14, 1999

1*3DIGITS]
It uses a "<major>.<minor>.<release>" numbering scheme.
balance-tag = "Balance" "=" balance CRLF

If the server supports an active billing account then this value is the
users balance on the system in dollars.

balance = 1*5DIGIT "." 2DIGIT

timeout-tag "TimeoutSeconds" "=" 1*5DIGIT

The number of seconds during which a session will remain alive, after
which the server will terminates the session automatically. This is
commonly referred to as the inactivity timeout. A server need not
provide this capability; however, if it does use session timeouts in
order to prevent monopolization of resources, it MUST inform the
client of the timeout interval by returning this response field.

"Expr" "=" pwd-expr "," expr-warn-per CRLF

pwd-expire-tag

Indicates when a users password will expire. The parameter pwd-expr
is a date in RFC 1123 format. And expr-warn-per is the number of
days (1*3DIGIT) prior to expiration that the user should be warned of
the upcoming password expiration.

office-list-tag

"OfficeList" "=" broker-code [";" broker-branch]
*("." broker-code [";" broker-branch]) CRLF

If the logged in user is a company owner or manager they may have
rights to login to multiple offices. The office-list-tag is an enumeration
of the offices they can login to.

broker-code = 1*24ALPHANUM
broker-branch = 1*4ALPHANUM

4.12 Resources

The capability-url-list is the set of functions or URLSs to which the login grants access. A capability
consists of a tag and a URL. The list returned from the server in the login reply has the following
format:

["Action" "=" action-URL CRLF]

["ChangePassword" "=" change-password-URL CRLF]
["GetObject" "=" get-object-URL]

"Login" "=" login-URL CRLF

["LoginComplete" "=" login-complete-URL CRLF]
["Logout" "=" logout-URL CRLF]

"Search" "=" search-URL CRLF

["Update" "=" update-URL CRLF]

April 14, 1999 19

Parameter Purpose

Action-URL A URL on which the client MUST perform a GET
immediately after login. This might include a bulletin or
the notification of email.

Change-password-URL A URL for the ChangePassword Transaction.
get-object-URL A URL for the Get Object Transaction.

Login-URL A URL for the Login Transaction. The client software
should use this URL the next time it performs a Login. If
this URL it is different that the one currently stored on the
client the client MUST update the stored one to the new
one. This provides a mechanism to move the Login server.

Login-complete-URL A URL for the LoginComplete Transaction. This URL is
intended to provide a means for allowing client application
vendors to implement client software copy protection. This
value may be User-Agent dependent.

Logout-URL A URL for the Logout Transaction.
Search-URL A URL for the Search Transaction.
Update-URL A URL for the Update Transaction.

The table is extensible; servers may define additional transactions for clients to access. The tags for
those additional transactions MUST begin with the user-agent token, followed by a dash “-“, followed
by an implementation-defined function name.

additional-transaction = user-agent-token "-" function-name

user-agent-token = token portion of the user-agent (Section 3.4)
function-name = 1*ALPHA

Example:
MLSWindows-special = URL

A compliant client need not recognize any transaction that is not included in this specification.

4.13 Reply Codes

Reply Meaning
Code

0 Operation successful.

20003 Zero Balance
The user has zero balance left in their account.

20004 RESERVED
thru
20011

20012 Broker Code Required
The user belongs to multiple broker codes and one must be supplied as part
of the login.

April 14, 1999

20

<NOTE: Broker List is sent back to the client>

20013

Broker Code Invalid
The Broker Code sent by the client is not valid or not valid for the user.

20014
thru
20019

RESERVED

20036

Miscellaneous server login error
The quoted-string of the body-start-line contains text that MUST be
displayed to the user.

20050

Server Temporarily Disabled
The server is temporarily offline. The user should try again later.

April 14, 1999

21

April 14, 1999

22

5 GetObject Transaction

The GetObject transaction is used to retrieve structured information related to known system
entities. It can be used to retrieve multimedia files and other key-related information as well as
system metadata. Objects requested and returned from this transaction are requested and returned
as MIME media types. Some servers MAY support multipart messages.

5.1 Required Client Request Header Fields

The header of any messages sent from the client MUST contain the following header fields:

Accept

The client MUST request a media <type> using the standard HTTP Accept
header field. Media-type formats (subtypes) are registered with the Internet
Assigned Number Authority (IANA) and use a format outlined in RFC 2045
[8]. When submitting a request the client MUST specify the desired type and
format. If the server is unable to provide the desired format it SHOULD
return a "406 Not Acceptable" status. However, if there are no objects of any
<subtype> available for the requested object the server SHOULD return "404
Not Found". The format of the Accept field is as follows:

Accept = "Accept" ":" type "/" subtype [";" parameter]
*("" SP type "/" subtype
[";" parameter])

type ="*"| "text" | "image" | "audio" | "video"
subtype ="*" | <A publicly-defined extension token that
has been registered with IANA>

parameter= "q" "=" < qvalue scale from 0 to 1 >

lllll

A compliant server MUST support at least text/plain, text/xml and
image/jpeg. The more common <types> and <subtypes> are as follows:

text/plain image/gif
text/xml image/jpeg
text/html image/tiff
video/mpeg audio/basic
video/quicktime

A more complete list is available at:
ftp.isi.edu/in-notes/iana/assigments/media-types

The qvalue is used to specify the desirability of a given media type/format,
with "1" being the most desirable, "0" being the least desirable, and a range
in between. The default qvalue is "1".

Example:
Accept: image/jpeg, image/tiff;q=0.5, image/gif;q=0.1

Verbally, this would be interpreted as "image/jpeg is the preferred media
type, but if that does not exist, then send the image/tiff entity, and if that
does not exist, send the image/gif entity."

The types supported by the server are defined in the Metadata Dictionary as
defined in Section 10.2.

April 14, 1999

23

5.2 Required Server Response Header Fields

In addition to the other Required Server Header Fields specified in Section 3.3 the following
response header fields are required.

Content-Type

Content ID

MIME-Version

The media type of the underlying data. The server MUST return this field in
all replies. Additionally, this field MUST be returned as part of the header for
each body part. This field MUST be set to the type of media returned. See
Section 5.1 for more information on <type> and <subtype>.

Content-Type = "Content-Type" ":" type "/" subtype

Example: Content-Type: image/jpeg

If the client has requested multiple IDs, the server MAY return a multipart
message. If it does, it MUST return a Content-Type of "multipart/parallel”
along with a boundary delimiter in the response header. See Section 5.10 for

more information on multipart responses.

Example: Content-Type: multipart/parallel; boundary=AAABBBCCC

An ID for the object. This field MUST be returned as part of the header for
each body part in a multipart response.

Content-ID =" Content-ID " ":"
*64<TEXT, excluding CR/LF>

Example: Content-ID: 123456
All responses MUST include a MIME-Version of "1.0" in the response header.

Example: MIME-Version: 1.0

5.3 Optional Server Response Header Fields

In addition to the other Optional Server Header Fields specified in Section 3.5 the following response
header field are also optional.

Link

Description

If the client has submitted a request with "Link=1" the header of the response
MUST contain the Link header field.

Link = lILinkll ll:ll |l<|| URI ||>l|
Example: Link: <http://www.TheSite.com/pic/123456.jpg>
A text description of the object.

Description = " Content-Description
*64<TEXT, excluding CR/LF>

Example: Content-Description: Front View

April 14, 1999

24

5.4 Required Request Arguments
Resource = <resource defined in the Metadata Dictionary (see Section 10.2.2)>

The resource from where the object should come is specified by this entry. For
more information see Section 5.9.

ID = I*ALPHANUM *("," 1*ALPHANUM)

The ID (e.g., MLS number, AgentID) for which the object is to be retrieved.
Note: if multiple IDs are sent then the host MAY respond with a multipart
MIME response. Not all servers will support multipart MIME responses.

5.5 Optional Request Arguments
Object (1*5DIGIT | ResourcelD)

This entry is either an enumeration serial number or a ResourceID defined in
the Metadata Dictionary when retrieving metadata (see Section 10.2.2). If
omitted, the designated preferred object of the given type is returned. This
parameter can be used to specify the photo number. For example, a value of
"3" would indicate photo number 3.

Link IIOII | Il1l|

This parameter indicates whether the object or a URL to the object should be
returned. If this parameter is set to "1" the server MAY return a URL to the
given object. The default is "0". The server MAY support this functionality
(Link="1") but MUST support Link="0". In other words, some servers may
store the objects in a database or generate them dynamically. Therefore, it is
not possible for those servers to return a URL to the requested object. In
these cases the server MAY not support Link="1". However, all servers
MUST support a method to get the object and therefore, MUST support the
case where Link="0".

5.6 Required Response Arguments

There are no required response arguments.

5.7 Optional Response Arguments

There are no optional response arguments.

5.8 Metadata

To retrieve metadata files the client must first retrieve the Metadata Dictionary, which is itself, a
type of metadata. The Metadata Dictionary can be retrieved by specifying the following:
Resource=METADATA and Object=0. Once the client application has retrieved the metadata, it can
analyze it to determine what other metadata files (Object not equal to 0) it must retrieve. A full
description of the Metadata Dictionary is provided in Section 10.

April 14, 1999

25

5.9 Resources

RETS does not require that any particular type of data be made available by a server. However, a
server MUST use a standard well-known name under which to make its data available if a suitable
well-known name is defined in the standard.

Table 10-1 contains the list of well-known resource names.

5.10Multipart Responses

In the case where the client has requested multiple IDs, the server MAY return a multipart
response. In the case of multipart responses, in which one or more different sets of data are
combined in a single body, a "multipart" media type field must appear in the entity's header. The
body must then contain one or more body parts, each preceded by a boundary delimiter line, and the
last one followed by a closing boundary delimiter line. After its boundary delimiter line, each body
part then consists of a header area, a blank line, and a body area.

The Content-Type field for multipart entities requires one parameter, "boundary". The boundary
delimiter line is then defined as a line consisting entirely of two hyphen characters ("-", decimal
value 45) followed by the boundary parameter value from the Content-Type header field, optional
linear whitespace, and a terminating CRLF.

The CRLF preceding the boundary delimiter line is conceptually attached to the boundary so that it
is possible to have a part that does not end with a CRLF (line break). Body parts that must be
considered to end with line breaks, therefore, must have two CRLFs preceding the boundary
delimiter line, the first of which is part of the preceding body part, and the second of which is part of
the encapsulation boundary.

The boundary delimiter MUST NOT appear inside any of the encapsulated parts, on a line by itself
or as the prefix of any line. It must be no longer than 70 characters, not counting the two leading
hyphens. Because boundary delimiters must not appear in the body parts being encapsulated, a user
agent must exercise care to choose a unique boundary parameter value. The boundary parameter
value in the example above could have been the result of an algorithm designed to produce boundary
delimiters with a very low probability of already existing in the data to be encapsulated without
having to prescan the data.

The boundary delimiter line following the last body part is a distinguished delimiter that indicates
that no further body parts will follow. Such a delimiter line is identical to the previous delimiter
lines, with the addition of two more hyphens after the boundary parameter value.

Example:

HTTP/1.1 200 OK

Server: Microsoft-11S/4.0

Date: Sat, 20 Mar 1999 12:03:38 GMT

Cache-Control: private

MIME-Version: 1.0

Content-type: multipart/parallel; boundary="simple boundary"

--simple boundary
Content-Type: image/jpeg
Content-ID: 123456
<binary data>

--simple boundary
Content-Type: image/jpeg

April 14, 1999

Content-ID: 123457
<binary data>

--simple boundary--

April 14, 1999

27

6 Logout Transaction
The Logout transaction terminates a session. Except for the cases where connection failure prevents
it or the user has requested an immediate shutdown of the client, the client SHOULD send the
Logout transaction before closing the connection. If the client sends a Logout transaction, the server

MUST send a response before closing the connection.

The server MAY send accounting information back to the client in the response to this transaction.
The client is not required to display or otherwise process the accounting information.

6.1 Required Request Arguments

There are no required request arguments.

6.2 Optional Request Arguments

There are no optional request arguments.

6.3 Required Response Arguments

There are no required response arguments.

6.4 Optional Response Arguments

ConnectTime = 1*9DIGITS
The amount of time that the client spent connected to the server, specified in
seconds.

Billing = *<TEXT, excluding CR/LF>

If the server supports an active billing account, this is total amount billed for
this session, specified as TEXT which is implementation-defined.

SignOffMessage = *<TEXT, excluding CR/LF>

Any text. The client MAY display this message, if the server includes it in the
response. Servers should not expect, however, that users would read or see
the message, since communication failure may make it impossible for the
client to receive the Logoff response.

April 14, 1999 28

7 Search Transaction

The Search transaction requests that the server search one or more searchable databases and return
the list of qualifying records. The body of the response contains the records matching the query,
presented in the requested format. The data can be returned in the following formats: "COMPACT",
"COMPACT-DECODED" or "STANDARD-XML".

7.1 Search Types

There are several different types of searches that can be performed. Each of these searches may by
conducted against different databases or tables depending on the server implementation. The server
MUST support at least one type of search. The types of searches supported by the server are
specified in the metadata.

ActiveAgent

Agent

History

Office

OpenHouse

Property

Prospect

Tax

Tour

An ActiveAgent Search is a search against the Agent/Member database/table.
This search only returns active agents. These are agents that are currently
authorized to access the server (paid-up, not retired, etc.)

An Agent Search is a search against the Agent/Member database/table. It is
used for retrieving information about the agents.

A History Search is a search against the history database/table.

An Office Search is a search against the office database/table. It is used for
retrieving information about the offices.

An OpenHouse Search is a search against the Open House database/table.

A Property Search is a search against the property database/tables. If the
server supports a cross-property search then the metadata will define a class
to use to perform the cross-property search.

A Prospect Search is a search against the Prospect database/tables. A
Prospect Search is used to retrieve prospect information from the server
database.

A Tax Search is a search against the public records database/tables. Many
systems have multiple public record databases. Each public record database
is assigned a class number. This class number is used by the client
application when submitting a search to distinguish which database the
search will be conducted against.

A Tour Search is a search against the Tour database/table.

7.2 Search Terminology

field-delimiter

field

= HEX HEX
This is the OCTET to be used as a delimiter for separating entries in
both the COLUMNS list and the DATA returned using the
"COMPACT" and "COMPACT-DECODED" formats.

= SQLFIELDNAME

April 14, 1999

29

A field is the keyword or code that the server uses to identify a
particular column in the database table. Each field may be either a
System-Name, as defined in the metadata, or a Standard-Name, as
defined in the Real Estate Transaction XML DTD. The server MUST
accept either set of names interchangeably.

field-data = *TEXT
Any valid data for a field.
record-count = 1*9DIGITS

This value indicates the number of records on the server matching the
search criteria sent in the search query.

XML-data-record = A data record as defined by the RETS Data XML DTD.

7.3 Search Response Body Format

The body of the search response has the following format when replying to a request with the format
set to "COMPACT" or "COMPACT-DECODED":

"<RETS" 1*SP reply-code 1*SP quoted-string *SP ">" CRLF

[count-tag]

[delimiter-tag]

[column-start-tag]

[column-end-tag]

*(compact-data)

[max-row-tag]

"</RETS [1*SP end-reply-code 1*SP quoted-string *SP] >" CRLF

The body of the search response has the following format when replying to a format request of
"STANDARD-XML" data:

"<RETS" 1*SP reply-code 1*SP quoted-string *SP ">"

[count-tag]

*(XML-data-record)

[max-row-tag |

"</RETS [1*SP end-reply-code 1*SP quoted-string *SP] >" CRLF

7.4 Required Request Arguments

SearchType ="ActiveAgent" | "Agent" | "History" | "Office" | "OpenHouse" |
"Prospect” | "Property" | "Tax" | "Tour"

The type of search to perform as discussed in Section 7.1 and defined
in the Metadata Dictionary (see Section 10.2).

Class = Class = 1*4DIGITs

This parameter is set to a value that represents the class of data
within the SearchType. The allowable numbers SHOULD be

April 14, 1999 30

sequential starting with one ("1") for each SearchType, and are
implementation-defined.

Query = The query used to retreive information from the server. The query is
based in the language described in Section 7.8.

QueryType = An enumeration giving the language in which the query is presented.
The only valid value for RETS/1.0 is “DMQL” which indicates the
query language described in Section 7.8.

7.5 Optional Request Arguments
Count = Iloll | ||1|| | ||2||

If this parameter is set to one ("1"), then a record-count is returned in
the response in addition to the data. Note that on most servers this
will cause the search to take longer since the count must be returned
before any records are received. If this entry is set to two ("2") then
only a record-count is returned; no data is returned. If this entry is not
present or set to zero ("0") there is no record count returned.

Format ="COMPACT" | "COMPACT-DECODED " | "STANDARD-XML"

"COMPACT" means a field list <COLUMNS> followed by a delimited
set of the data fields. "COMPACT-DECODED" is the same as
COMPACT except the data in a fully-decoded (people-readable)
format. See Section 11 for more information on the COMPACT
formats. "STANDARD-XML" means an XML presentation of the data
in the format defined by the RETS Data XML DTD. Servers MUST
support all formats.

Limit ="NONE" | 1*9DIGIT

If this entry is set to ("NONE") or is not present, the server should not
enforce the standard download limit. The use of "NONE" MAY disable
both the <MAXROWS> tag and return-code "20208 Maximum Records
Exceeded". Client implementers should be aware that some server
implementations might not honor the request to disable the limit.

Alternatively, if the entry is set to a number greater than '0', the
server MUST not return more than the specified number of records. If
the server did not return all matching records then the <MAXROWS>
tag MUST be sent at the end of the data stream.

Offset = 1*9DIGIT

This entry indicates to the server that it should start sending the data
to the client beginning with the record number indicated, with a value
of "1" indicating to start with the first record. This can be useful when
requesting records in batches, however, client implementers should be
aware that data on the server MAY change as they iterate through the
batches and it is possible that some records may be missed or added.
In other words, the server is not required to maintain a cursor to the
data.

April 14, 1999 31

Select = field *("," field)

This parameter is used to set the fields that are returned by the query.

If this entry is not present then all allowable fields for the search/class
are returned. The server MUST accept a query, which contains
unknown fields in its select list; it is the client’s responsibility to
decide what to do if the server does not provide a requested field.

7.6 Required Response Arguments

There are no required response arguments.

7.7 Optional Response Arguments

compact-data ="<DATA>" field-delimiter *(field-data field-delimiter) "</DATA>"
CRLF

If a "COMPACT" of “COMPACT-DECODED” format is specified in the
request then a "<DATA>" tag, a delimited list of field-data and a
"</DATA>" end tag are returned to the client for each record returned.
The field-delimiter is determined by the delimiter-tag.

count-tag ="<COUNT" 1*SP record-count 1*SP "/>" CRLF

When the client application specifies that a count should be returned
(count-type ="1" | "2") a count-tag MUST be sent by the server in the
response. The "<COUNT>" tag MUST be on the first line following the
reply-code line. The record-count value indicates the number of
records on the server matching the search criteria sent in the search
query.

column-start-tag "<COLUMNS>" field-delimiter 1*(field field-delimiter) CRLF

If a "COMPACT" format is specified in the request then a
"<COLUMNS>" tag, including a delimited list of all the fields of data
being returned, is sent back in the response. The field-delimiter is
determined by the delimiter-tag. Note: the "</COLUMNS> end tag is
at the end of all the data.

"</COLUMNS>" CRLF

column-end-tag

A closing tag for the column-start-tag. If a "COMPACT" format is
specified in the request and the column-start-tag was sent by the
server then the column-end-tag MUST also be sent.

delimiter-tag "<DELIMITER" 1*SP field-delimiter 1*SP "/>" CRLF

This parameter tells the client which character (OCTET) to use as a
delimiter for both the COLUMNS list and the DATA returned. The
server MUST send this parameter for "COMPACT" or "COMPACT-
DECODED" formats. The "<DELIMITER>" tag MUST precede
column-start-tag.

max-row-tag ="<MAXROWS/>" CRLF

April 14, 1999

32

7.8 Query language

A tag that indicates the maximum number of records allowed to be
returned by the server has been exceeded, or alternatively, the Limit
number passed by the client in the request has been exceeded.

The query takes the form indicated below. This is the actual search criteria passed to the server. The
server parses this query and generates a server compatible query based on the parameters passed in
the query-list.

Query
sub-query

field-value
lookup-list
lookup-or
lookup-not
lookup-and
lookup
string-list
string
string-eq
string-start
string-contains
string-char
range-list
range
between
greater
less

date

month

day

year

TODAY

= 1*(II(II Sub-query Il)ll *(Il’ll II(II Sub—query II)II))
= 1*(II(II ﬁeld |I=I| ﬁeld_value Il)ll *(n | n II(II ﬁeld Il=ll ﬁeld_value ll)ll))

= lookup-list | range-list | string-list

= lookup-or | lookup-not | lookup-and
="|" lookup *("," lookup)

="~"lookup *("," lookup)

="+"lookup *("," lookup)

= <any legal ALPHANUM value for the field as defined in the metadata>
= 1*(string *("," string))

= string-eq | string-start | string-contains | string-char
= 1*ALPHANUM

= I*ALPHANUM "*"

="*" 1*ALPHANUM "*"

= *ALPHANUM "?" *ALPHANUM

= 1*(range *("," range))

= between | greater | less

= (date | 1*DIGIT) "-" (date | 1*DIGIT)
= (date | 1*DIGIT) "+"

= (date | 1*DIGIT) "-"

= (year "-" month "-" day) | TODAY

= 2DIGIT

= 2DIGIT

= 4DIGIT

="TODAY" <the host should substitute this with today’s date>

Note: All dates and times submitted in queries MUST be in GMT.

There are three types of field values that can be passed in the query string. They are a <lookup-list>,
a <range> and a <string>. A <lookup-list> is a field that may only contain predefined values.
"Status" & "Type" typically falls into this category. A <range> field is of type numeric or date. These
fields can be searched based on a range of values. "ListPrice" and "ListDate" fall into this category.
All values specified in a <range> field are to be treated as inclusive (e.g. 2+ is the same as 2 or
greater, inclusive of 2; 2-3 is the same as 2 to 3, inclusive of 2 & 3; 2- is the same as 2 or less,

April 14, 1999

33

inclusive of 2). A <string> field is basically any other character field not falling into the other two
categories. These are usually freeform text fields. An example of this kind of field is "OwnerName".

Each <field> may be either a System-Name, as defined in the metadata, or a Standard-Name, as
defined in the Real Estate Transaction XML DTD. The server MUST accept either set of names
interchangeably.

This query language provides for a nesting of sub-queries. For example:
Query=((AREA=]|1,2) | (CITY=ACTON)),(LP=200000+)

Query Example: Query=(ST=| ACT,SOLD),

(LP=200000-350000),
(STR=RIVER®),
(STYLE=RANCH),
(EXT=+WTRFRNT,DOCK),
(LDATE=1999-03-01+),
(REM=*FORECLOSE®),
(TYPE=~CONDO,TWNHME),
(OWNER=P?LE)

Verbally, this would be interpreted as "return properties with (ST
equal ACT or SOLD) and (LP between 200000 and 350000) and (STR
beginning with RIVER) and (STYLE equal RANCH) and (EXT equal
WTRFRNT and DOCK) and (LDATE greater than or equal to 1999-03-
01) and (REM containing FORECLOSE) and (TYPE not equal to
CONDO and not equal to TWNHME) and (OWNER starting with P
and having LE in the 3™ and 4 characters)."

7.9 Reply Codes

Reply
Code

Meaning

Operation successful.

20200

Unknown Query Field
The query could not be understood due to an unknown field name.

20201

No Records Found
No matching records were found.

20202

Invalid Select
The Select statement contains field names that are not recognized by the
server.

20203

Miscellaneous Search Error
The quoted-string of the body-start-line contains text that MAY be displayed
to the user.

20206

Invalid Query Syntax
The query could not be understood due to a syntax error.

20207

Unauthorized Query
The query could not be executed because it refers to a field to which the
supplied login does not grant access.

20208

Maximum Records Exceeded
Operation successful, but all of the records have not been returned. This

April 14, 1999

34

reply code indicates that the maximum records allowed to be returned by
the server have been exceeded. Note: reaching/exceeding the "Limit" value
in the client request is not a cause for the server to generate this error.

20209

Timeout
The request timed out while executing

April 14, 1999

35

8 Get Transaction

Gets an arbitrary file from the server or performs an arbitrary action, specified by URI. This is
basically a standard HTTP GET. The file to get is passed as part of the Request-URI.

8.1 Required Request Arguments

There are no required request arguments.

8.2 Optional Request Arguments

There are no optional request arguments.

8.3 Required Response Arguments

There are no required response arguments.

8.4 Optional Response Arguments

There are no optional response arguments.

8.5 Status Conditions

See the General Status Codes in Section 3.9 for typical Status-Codes.

April 14, 1999

36

9 Update Transaction

This has not yet been defined.

April 14, 1999

37

10 Metadata Format

Metadata enables a client that receives data from a compliant server to better format the data for
display, and to store it efficiently for future retrieval. While use of the metadata is not necessary to
retrieve data for simple display purposes, more sophisticated clients will want to use the metadata to
make more intelligent use of the information retrieved.

Note that this section of this specification uses <t> to show tabs (HT from Section 2.2) and all rows
are terminated with a CRLF.

The values referenced in this Section 10 can be found in Sections 2.2 and 11.2.

10.10rganization and Retrieval

Metadata is organized by table/object, with each table having its own unique set of metadata
describing the fields available in that table. The client retrieves the metadata by using the GetObject
Transaction specifying the object of interest as the Object field, and specifying METADATA as the
Resource. The client MUST specify Object=0 to retrieve the Metadata Dictionary.

The server supplies the metadata as documents using the formats described in this section. The
client MUST accept fields in the metadata that are not defined in this standard, although it is not
required to process those fields in any way.

The client may cache the metadata between sessions. If it does, it MUST record the value of the
Metadata-Version field from each session in which it caches retrieved metadata, and MUST request
new metadata each time the value of the metadata-version field changes.

10.2 Metadata Dictionary for Resources

Clients can determine the number and type of searchable entities by referencing the Searchable
Resource Classes. A server MUST advertise its resources. It MAY advertise all of its available
resources or MAY restrict the advertised list by logon or other criteria. A server’s advertisement of a
resource does not require that the server be able to accommodate any arbitrary search for that user;
the server MAY restrict access to resources that it advertises. If the server supports multimedia
objects then it MUST advertise the supported types.

All resources that can be searched or retrieved are defined in a document with the format defined in
this section. There are four parts to the document. The first part provides version information, the
second part describes the available resources, the third part describes the searchable classes, and the
forth part describes the available multimedia types.

10.2.1 Well-Known Resource Names

RETS does not require that any particular type of data be made available by a server. However, a
server MUST use a standard well-known name under which to make its data available if a suitable
well-known name is defined in the standard. The following table contains the list of well-known
resource names.

Table 10-1 Well-known Resource Names

Resource Name Purpose

"ActiveAgent" A resource that contains information about active agents. These

April 14, 1999 38

Resource Name Purpose

are agents that are currently authorized to access the server
(paid-up, not retired, etc.)

"Agent" A resource that contains information about agents.

"History" A resource that contains information about the accumulated
changes to each listing.

"METADATA" The system resources.

"Office" A resource that contains information about broker offices.

"OpenHouse" A resource that contains information about open-house activities.

"Property" A resource that contains information about listed properties.

Information in this resource is described by Real Estate
Transaction XML DTD in addition to appropriate metadata.

"Prospect” A resource that contains information about sales or listing
prospects.

"Tax" A resource that contains tax assessor information.

"Tour" A resource that contains information about tour activities.

10.2.2 Version

The Version section will start with a <METATA-VERSION> tag indicating the current version of
the file. This tag is followed by a <TIMESTAMP> section, which contains the timestamp for the
last time the document was modified. Finally, it is followed by a <COMMENTS> section. The
version section has the following format:

"<METADATA-VERSION" SP "Version" "=" metadata-version *SP ">" CRLF
"<TIMESTAMP" SP "Date" "=" Date *SP "/>" CRLF

"<SYSTEM" SP "ShortName" "=" code-name SP "Name" "=" long-name *SP "/>" CRLF
["<COMMENTS>" CRLF]

[*(comment CRLF)]

["</COMMENTS>" CRLF]

"</METADATA-VERSION>" CRLF

metadata-version = 1*2DIGITS "." 1*2DIGITS ["." 1*3DIGITS]

This is the version of the document. The convention used is a
"<major>.<minor>.<release>" numbering scheme. Every time this
document changes the version number should be increased.

Date = Date using the format defined in RFC 1123.
code-name = 1*10ALPHANUM

long-name = 1*48TEXT

comments = <any TEXT>

An example Version section follows:

April 14, 1999

<METADATA-Version="1.00.000">

<TIMESTAMP Date= "Sat, 20 Mar 1999 12:03:38 GMT" />

<SYSTEM Code= "NTREIS" Name= "North Texas Real Estate Information System" />
<COMMENTS>

This is a comment line

</COMMENTS>

</METADATA-VERSION>

10.2.3 Resources

The Resource definition section will start with a <METADATA-RESOURCE> tag. This tag is
followed by a <COLUMNS> section which contains the name of the fields as defined in Table
10-2 followed by the <FIELD> section which contains the actual field information. The Resource
section has the following format:

"<METADATA-RESOURCE>" CRLF
"<COLUMNS>" CRLF

resource-field *(HT resource-field) CRLF
"</COLUMNS>" CRLF

"<FIELDS>" CRLF

*(resource-data *(HT resource-data) CRLF)
"</FIELDS>" CRLF
"</METADATA-RESOURCE>" CRLF

resource-field = <Field Name from Table 10-2>

resource-data = <valid value as defined in Table 10-2>

An example Resource definition follows:

<METADATA-RESOURCE>

<COLUMNS>
StandardName<t>VisibleName<t>Description<t>ResourceID<t>ClassCount<t>ObjectTypeCount<t>Version<t>ChangeDate
</COLUMNS>

<FIELDS>

Agent<t>Agent<t>Agent Table<t>Agent<t>1<t>0<t>1.00.000<t> Sat, 20 Mar 1999 12:03:38 GMT
Property<t>Property<t>Property Table<t>Property<t>5<t>1<t>1.00.000<t> Sat, 20 Mar 1999 12:03:38 GMT

</FIELDS>

</METADATA-RESOURCE>

Table 10-2 Metadata Content — Resource

Field Name Content Type Description

StandardName Alphanumeric The name of the resource. This must be a
well-known name if applicable.

VisibleName Alphanumeric The user-visible name of the resource.
Description Printable A user-visible description of the resource.
ResourcelD Alphanumeric The name of the item which acts as a unique

ID for this resource. This ID is passed as the
Object parameter to the GetObject
transaction when retrieving metadata. This
value must be in the Class and Object
sections (see Section 10.2.4 and 10.2.5)

April 14, 1999

40

Field Name Content Type Description

ClassCount Numeric The number of classes sharing this resource
description. There must be one class
description entry for each class.

ObjectTypeCount Numeric The number of predefined object types
available within this resource. There must
be one object type entry for each object type.

Version Character The version of the Metadata. The convention
used is a "<major>.<minor>.<release>"
numbering scheme. Clients MAY rely on this
date for cache management.

ChangeDate Date The date on which the content of this
resource was last changed. Clients MAY rely
on this date for cache management.

10.2.4 Searchable Resource Classes

A given resource may house multiple classes of entries that can be searched separately. The
Metadata for a resource supporting searchable classes MUST contain a class description for each
class supported.

The Resource Class definition section will start with a <METADATA-CLASS> tag. This tag is
followed by a <COLUMNS> section, which contains the name of the fields as defined in Table
10-3 followed by the <FIELD> section, which contains the actual field information. The Class
section has the following format:

"<METADATA-CLASS>" CRLF
"<COLUMNS>" CRLF

class-field *(HT class-field) CRLF
"</COLUMNS>" CRLF

"<FIELDS>" CRLF

*(class-data *(HT class-data) CRLF)
"</FIELDS>" CRLF
"</METADATA-RESOURCE>" CRLF

class-field = <Field Name from Table 10-3>

class-data = <valid value as defined in Table 10-3>

An example Resource Class definition follows:

<METADATA-CLASS>

<COLUMNS>
ResourcelD<t>ClassName<t>VisibleName<t>StandardName<t>Description
</COLUMNS>

<FIELDS>

Property<t>RES<t>Single Family<t>ResidentialProperty<t>Single Family Residential
Property<t>CON<t>Condos and Townhomes<t>CommonInterest<t>Condos and Townhomes
Property<t>MUL<t> Multi Family <t>MultiFamily<t> Multi Family Residential
Property<t>MOB<t>Mobile Home <t> ResidentialProperty<t> Mobile Homes
Property<t>LND<t>Lots and Land<t> Lots and Land <t>Lots and Land

</FIELDS>

April 14, 1999

</METADATA-CLASS>

Table 10-3 Metadata Content — Resource Class

Metadata Field Content Type Description

ResourcelD Alphanumeric This is the same as the ResourcelD for the
associated parent resource as defined in
Section 10.2.3.

ClassName Alphanumeric The name of the class. This "Name" will also
appear as the class-name in the metadata
defining the class (see Section 10.3.2).

VisibleName Alphanumeric The user-visible name of the class.

StandardName "ResidentialProperty" | The XML standard name. This the name
"LotsAndLand" from the Real Estate Transaction XML DTD.
"CommonInterest"
"MultiFamily"

Description Printable A user-visible description of the resource.

10.2.5 Object Types

Object type names allow the operator of a particular server to advertise its supported multimedia
types. These types are standard MIME types as described in Section 5.1.

The Resource Class definition section will start with a <METADATA-OBJECT> tag. This tag is
followed by a <COLUMNS> section, which contains the name of the fields as defined in Table
10-4 followed by the <FIELD> section, which contains the actual field information. The Class
section has the following format:

"<METADATA-OBJECT>" CRLF
"<COLUMNS>" CRLF

object-field *(HT object-field) CRLF
"</COLUMNS>" CRLF

"<FIELDS>" CRLF

*(object-data *(HT object-data) CRLF)
"</FIELDS>" CRLF
"</METADATA-OBJECT>" CRLF

object-field = <Field Name from Table 10-4>

object-data = <valid value as defined in Table 10-4>

An example Resource Object definition follows:

<METADATA-OBJECT>

<COLUMNS>
ResourcelD<t>StandardName<t>VisibleName<t>Description
</COLUMNS>

<FIELDS>

Property<t>image<t>Photos<t>Property Photos

April 14, 1999

42

</FIELDS>
</METADATA-OBJECT>

Table 10-4 Metadata Content — Resource Object

Metadata Field Content Type Description

ResourcelD Alphanumeric This is the same as the ResourcelD for the

associated parent resource as defined in
Section 10.2.3.

StandardName Alphanumeric The name of the object type. This is the
"type" that a client can pass to the "Accept"
parameter in the Get Object transaction (see
Section 5.1).

VisibleName Alphanumeric The user-visible name of the object type.

Description Printable A user-visible description of the object type.

10.3 Metadata Format for Searchable Resources

All tables that can be searched are defined in a document with the format defined in this section.
There are basically three parts to the document. The first part provides version information, the
second part describes the searchable tables and the third part describes the lookups referenced
within the table section.

10.3.1 Version

The metadata contains a Version section exactly like the one defined for the Metadata Dictionary
defined in Section 10.2.2 and should exactly match both the TimeStamp and Version provided in
the Metadata Dictionary.

10.3.2 Tables

The Table definition section will start with a <METADATA-TABLE> tag indicating the table
name. This tag is followed by a <COLUMNS> section, which contains the name of the fields as
defined in Table 10-5, followed by the <FIELD> section, which contains the actual field
information. The Table section has the following format:

"<METADATA-TABLE" SP "Name" "=" class-name *SP ">" CRLF
"<COLUMNS>" CRLF

metadata-field *(HT metadata-field) CRLF

"</COLUMNS>" CRLF

"<FIELDS>" CRLF

*(field-data *(HT field-data) CRLF)

"</FIELDS>" CRLF

"<s/METADATA-TABLE>" CRLF

class-name = 1*32ALPHANUM
This is the same as the ClassName defined in Section 10.2.4.

metadata-field = <Field Name from Table 10-5>

April 14, 1999

43

field-data = <valid value as defined in Table 10-5>

An example Table definition follows:

<METADATA-TABLE Name="RES">

<COLUMNS>

SystemName<t>StandardName<t>LongName<t>ShortName<t>Maximumlength<t>DataType<t>
Precision<t>Searchable<t>Interpretation<t>Alignment<t>UseSeparator<t>EditMask<t>LookupName

</COLUMNS>
<FIELDS>

LN<t>ListID<t>Listing ID<t>ListID<t>8<t>Int<t>0<t>1<t>Number<t>Left<t>0<t><t><t>
PTYP<t>PropType<t>Property Type<t>Prop Type<t>2<t>Int<t>0<t>1<t>Number<t>Left<t>0<t><t><t>
LP<t>ListPrice<t>List Price<t>Lst Pr<t>8<t>Int<t>0<t>1<t>Currency<t>Right<t>1<t><t><t>
OWN<t>Owner<t>Owner Name<t>Own Name<t>20<t>Character<t>0<t>0<t><t>Left<t>0<t><t><t>
VEW<t>View<t>Type of View<t>View<t>10<t>Long<t>0<t>1<t>LookupBitmask<t>Left<t>0<t><t>VEW<t>
EF<t>ExtFeat<t>Ext Features<t>Ext Feat<t>10<t>Character<t>0<t>1<t>LookupMulti<t>Left<t>0<t><t>EFT<t>
SD<t>SchDist<t>School District<t>SchDist<t>10<t>Character<t>0<t>1<t>Lookup<t>Left<t>0<t><t>SD<t>
AR<t>MLSArea<t>MLS Area<t>Area<t>4<t>Int<t>0<t>1<t>Lookup<t>Left<t>0<t><t>AR<t>

</FIELDS>

</METADATA-TABLE>

The following table lists the minimum acceptable content for server-supplied metadata used in

describing a table.

Table 10-5 Metadata Content - Tables

Field Name

Content Type

Description

SystemName Alphanumeric The name of the field as it is known to the
native server.
StandardName Alphanumeric The name of the field as it is known in the Real
Estate Transaction XML DTD.
LongName Printable The name of the field as it is known to the user.
This is a localizable, human-readable string.
Use of this field is implementation-defined.
ShortName Printable An abbreviated field name that is also
localizable and human-readable. Use of this
field is implementation-defined.
MaximumLength Numeric The maximum length of the field, in characters
or digits as appropriate.
DataType "Boolean" A truth-value, stored as "1" for true and "0" for
false.
"Character" An arbitrary sequence of printable characters.
"Date" A date, in YYYY-MM-DD format.
"DateTime" A timestamp, in YYYY-MM-DD
HH:MM:SS[.TTT] format.
"Time" A time, stored in HH:MM:SS[.TTT] format.

April 14, 1999

44

Field Name

Content Type

Description

"Tiny" A numeric value that can be stored in no more
than 8 bits.
"Small" A numeric value that can be stored in no more
than 16 bits.
"Int" A numeric value that can be stored in no more
than 32 bits
"Long" A numeric value that can be stored in no more
than 64 bits.
"Decimal" A decimal value that contains a decimal point
(see Precision).
Precision Numeric The number of digits to the right of the decimal
point when formatted.
Searchable Boolean A truth-value which indicates that the field is
searchable.
Interpretation "Number" An arbitrary number.
"Currency" A number representing a currency value.
"Lookup" A value that should be looked up in the Lookup
Table. This is a single selection type lookup (e.g.
STATUS)
"LookupMulti" A value that should be looked up in the Lookup
Table. This is a multiple-selection type lookup
(e.g. FEATURES)
"LookupBitmask" A value that should be looked up in the Lookup
Table. This is a multiple-selection type lookup
that is stored as a bitmask field. Fields of this
type are limited to 31 choices.(e.g. VIEW)
Alignment "Left" The value MAY be displayed left aligned.
"Right" The value MAY be displayed right aligned.
"Center" The value MAY be centered in its field when
displayed.
"Justify" The value MAY be justified within its field
when displayed. This is decimal alignment for
Decimal DataTypes.
UseSeparator Boolean A truth-value which indicates that the numeric

value MAY be displayed with a thousands

April 14, 1999

45

Field Name Content Type Description

separator.
Mask Character A string which can be used by the client to
(optional) perform simple insertion editing on a text or

numeric field.

LookupName Character The name of the LookupData section containing
the lookup data for this field. Required if
Interpretation is Lookup.

Date formats are based on ISO 8601 [7]

10.3.3 Lookups

The lookup section of the document describes all ancillary tables that are referenced in the Table
section of the document. There MUST be a corresponding lookup for every "Lookup",
"LookupMulti" and "LookupBitmask".].

Each Lookup entry will start with a <METADATA-LOOKUP> tag indicating the lookup name.
The name MUST be the name from the LookupName column of the table definition. This is
followed by a <COLUMNS> section, which contains the name of the fields as defined in Table
10-6, followed by the <FIELD> section, which contains the actual lookup field information. The
Lookup section has the following format:

"<METADATA-LOOKUP" SP "Name" "=" lookup-name *SP ">" CRLF
"<COLUMNS>" CRLF

lookup-field *(HT lookup-field) CRLF

"</COLUMNS>" CRLF

"<FIELDS>" CRLF

*(lookup-data *(HT lookup-data) CRLF)

"</FIELDS>" CRLF

"</RETS-LOOKUP>" CRLF

lookup-name = 1*32ALPHANUM
lookup-field = <Field Name from Table 10-6>
lookup-data = <valid value as defined in Table 10-6>

An example Lookup definition follows:

<METADATA-LOOKUP NAME="AR">
<COLUMNS>
LongName<t>ShortName<t>Value
</COLUMNS>

<FIELDS>

Capitol Hill<t>Cap Hill<t>1

Juanita Hill<t>Juanita<t>2

Maple Valley<t>Mpl Valley<t>3
Downtown Redmond<t>Dntn Rdmd<4>
</FIELDS>

</METADATA-LOOKUP>

Table 10-6 Metadata Content - Lookup

April 14, 1999 46

Field Name

Content Type

Description

LongName

Printable

The name of the field as it is known to the
user. This is a localizable, human-readable

string. Use of this field is implementation-
defined.

ShortName

Printable

An abbreviated field name that is also
localizable and human-readable. Use of this
field is implementation-defined.

Value

Alphanumeric

The value to be sent to the server when
performing a search (this field must be
numeric for LookupBitmask types).

April 14, 1999

47

11 Compact Data Format

Clients may choose to access data from a server in a "COMPACT" data format that does not use full
XML representation. When a client requests information from a compliant server in "COMPACT"
format, it will typically need to interpret the result by using the metadata that the server makes
available.

11.1Overall format

Compact-format records are sequences of fields separated by delimiter. A tab character (an octet
with a binary value of 9) is the default delimiter unless another is specified as part of the
transaction. The sequence of fields MUST be described by a <COLUMNS> tag in the body of the
message that carries the compressed records. No field may be omitted from the <DATA>; if the value
of a particular field for some record is undefined, the value SHOULD be represented by two
delimiters with no intervening space.

Compact records are enclosed within a <DATA> start tag and a </DATA> end tag. The records are
separated from each other by a CRLF line termination sequence.

11.2Transmission standards

A client or server transmitting a compact record MUST encode the data according to Table 11-1.

Table 11-1 Transmission Formats for Compact Records

Type Encoding Format

Numeric An optional sign, followed by zero or more digits, followed by an optional
period, followed optionally by zero or more digits. A valid number MUST
contain at least one digit if it includes a decimal point or sign. The value may
contain leading zeros before the period and/or trailing zeros after the decimal
point and fraction, if any.

Character The plain character sequence.

Date Eight digits in YYYY-MM-DD order, with dashes separating the year from
the month and the month from the day.

Time Six digits in HH:MM:SS[.TTT], with colons separating the hour from the
minute and the minute from the second, with a three-digit optional fractions
of a second format separated from the seconds with a decimal <".">.

Date-Time A fourteen-digit string with separators as above, and a space between the
day and the hour, as YYYY-MM-DD HH:MM:SS[.TTT], with a three-digit
optional fractions of a second separated from the seconds with a decimal

<".">

MultiValue A numeric representation of a multi-value lookup. This format is also known
as a bitmask format, where each bit represents one of the multi-value
choices.

Boolean A single character, either 1 for true or 0 for false.

April 14, 1999

12 Session Protocol

A RETS session follows a well-defined timing sequence in becoming established and in terminating.
In particular, the authorization sequence MUST be followed in order to begin using other
transactions within the protocol. The protocol contains four phases: connection establishment,
authorization, session and termination.

12.1Connection Establishment

A client initiates communication with a server by beginning a TCP connection on any mutually
agreed TCP port, with the default being 80. When the TCP connection has entered the Established
state, the session proceeds to the start of the Authorization phase.

12.2 Authorization

Authorization begins when the client sends the server a Login transaction. The Login transaction
contains the basic information that the server requires in order to start an authorization decision:
the user ID and optionally, some information about the client software.

A server responds to the Login request by sending back a "401 Unauthorized" status code and a
WWW-Authenticate header. This is part of an authentication challenge to the client. Part of the
WWW-Authenticate header contains a checksum (nonce) of a concatenation of the following:

1. The client-IP.
2. The server-supplied timestamp.
3. The servers private-key.

The client concatenates the nonce to the checksum of the Request-URI; then performs an MD5 digest
using a concatenation of the username, realm and password as the secret. This result is then
returned to the server as part of an Authorization header. The server MUST then compute the
equivalent function using its own stored copy of the user’s password. If the two match and the nonce
is the same, the user is considered authenticated, and the login can proceed with the server
informing the client of the available capabilities. The login has been accomplished without actually
sending the password. A server MAY provide an anonymous login. A client wishing an anonymous
login sends an empty Authentication field in its Login transaction, after which the authorization
proceeds as before.

12.3Session

Once the Authorization phase has been completed, both endpoints enter the Session phase. During
the Session phase, clients may issue any combination of requests for which they are authorized. The
first of these MUST be to issue a GET requests for the "Action" URL included in the Login response
(Section 4.10). After this, clients may issue other transactions.

Clients MAY issue multiple transactions without waiting for responses. However, servers are not
required to process these requests in parallel, nor are servers required to complete the requests in
the order in which they were issued. If a client issues a request before receiving a response to some
earlier request, the client MUST be prepared to receive the responses in any order. The only way for
a client to guarantee sequential execution of requests on every server is to wait for a response to any
outstanding request before issuing a new request.

April 14, 1999

12.4Termination

A client SHOULD initiate termination of the session by sending a Logoff transaction. If a server
receives a Logoff transaction while other operations are pending, it SHOULD abort those pending
operations. However, a server MUST not rely on receiving a Logoff transaction in order to terminate
a session, due to the possibility of communications problems preventing the transmission of the
Logoff transaction by the client.

Servers SHOULD provide a timeout mechanism, and if they do, MUST inform the client of the
timeout interval during the Login transaction (Section 4.12).

April 14, 1999

50

13 Sample Sessions

To be supplied.

April 14, 1999

51

14 Acknowledgments

The creation of this specification would not have been possible without the sponsorship and
coordination of efforts provided by the National Association of REALTORS®.

This document has benefited greatly from the comments of all those participating in the National
Association of REALTORS®-Standards Work Group.

In addition to the authors, valuable discussion instrumental in creating this document has come
from:

Larry Colson
Moore Data Management Services

Tom Curtis
Metro MLS

Kevin Knoepp
GTE Enterprise Solutions

Tom McLean
Resolution Software Consulting, Inc.

Tony Salvati
Grant Thornton

Errol Samuelson
RealSelect, Inc.

Allan Shapiro
Interealty Corporation

Dale Stinton
National Association of REALTORS®

15 Authors

Dan Musso

WyldFyre Technologies, Inc.
960 Saratoga Ave.

Suite 209

San Jose, CA 95129

Email: dan@WyldFyre.com

Bruce Tobak

OPT, Inc.

11801 N. Tatum Blvd.
Suite 142

Phoenix, AZ 85028

Email: btobak@optc.com

April 14, 1999

16 References

(1]

(2]
(3]
(4]

(5]

(6]

(71

(8]

Braden, R., "Requirements for Internet Hosts — Communication Layers" STD 3, RFC 1123,
IETF 1989.

Fielding, R., "Hypertext Transfer Protocol — Version 1.1", RFC 2068, January 1997
Rivest, R., "The MD5 Message Authentication Algorithm", RFC 1321, April 1992

Crocker, D., "Standard for ARPA Internet Text Messages", RFC 822, IETF 1982

US-ASCII. Coded Character Set - 7-Bit American Standard Code for Information Interchange.

Standard ANSI X3.4-1986, ANSI, 1986.

Franks, J., Hallam-Baker, P., Hostetler, J., Leach, P., Luotonen, A., Sink, E., and L. Stewart,
"An Extension to HTTP : Digest Access Authentication", RFC 2069, January 1997.

International Organization for Standards, "Data Elements and Interchange Formats -
Information Interchange - Representation of Dates and Times", ISO 8601, June 1988.

Borenstein, N., Freed, F., "Multipurpose Internet Mail Extensions (MIME) Part One: Format
of Internet Message Bodies", RFC 2045, November 1996.

April 14, 1999

53

